43 research outputs found

    Violence in hunters, fishermen, and gatherers of the Chinchorro culture: Archaic societies of the Atacama Desert (10,000–4,000 cal yr BP)

    Get PDF
    Objectives: This article addresses evidence of violence imbedded in both soft and hard tissues from early populations of hunters, fishermen, and gatherers, known as the Chinchorro culture, who lived between 10,000 and 4,000 cal yr BP, along the coast of the Atacama Desert, one of the driest environments on Earth. Our study is aimed to test two hypotheses (a) that interactions and violent behaviors increased through time as population density and social complexity augmented; and (b) that violence was more prevalent between local Chinchorro groups and groups from other inland locations. Material and Methods: Two lines of data were analyzed: (1) bioarchaeology, through the quantification of physical traces of interpersonal violence in skeletons and mummies from a sample of 136 adult individuals and, (2) isotopic chemical analysis (strontium) of individuals with traces of trauma in order to determine their local or foreign origin. Results: Violence among Chinchorro populations was ubiquitous and remained invariant over time, with a remarkable skew to male (about 25% above female across the complete sample). Moreover, the chemical signature of individuals with traces of violence was not of foreign origin. Discussion: The violence exerted by the Chinchorro groups was not related to increased population size, nor social complexity and was mostly restricted to individuals coming from the same coastal habitat. That is, our data suggest that violence was constant across the Archaic period among the Chinchorro, implying that violent behavior was part of the sociocultural repertory of these populations, likely associated to mechanisms to resolve conflicts and social tensions

    Effectiveness of the global protected area network in representing species diversity

    Get PDF
    The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, 'one size fits all'—conservation targets

    A jump-growth model for predator-prey dynamics: derivation and application to marine ecosystems

    Full text link
    This paper investigates the dynamics of biomass in a marine ecosystem. A stochastic process is defined in which organisms undergo jumps in body size as they catch and eat smaller organisms. Using a systematic expansion of the master equation, we derive a deterministic equation for the macroscopic dynamics, which we call the deterministic jump-growth equation, and a linear Fokker-Planck equation for the stochastic fluctuations. The McKendrick--von Foerster equation, used in previous studies, is shown to be a first-order approximation, appropriate in equilibrium systems where predators are much larger than their prey. The model has a power-law steady state consistent with the approximate constancy of mass density in logarithmic intervals of body mass often observed in marine ecosystems. The behaviours of the stochastic process, the deterministic jump-growth equation and the McKendrick--von Foerster equation are compared using numerical methods. The numerical analysis shows two classes of attractors: steady states and travelling waves.Comment: 27 pages, 4 figures. Final version as published. Only minor change

    Quasi-stationary regime of a branching random walk in presence of an absorbing wall

    Full text link
    A branching random walk in presence of an absorbing wall moving at a constant velocity vv undergoes a phase transition as the velocity vv of the wall varies. Below the critical velocity vcv_c, the population has a non-zero survival probability and when the population survives its size grows exponentially. We investigate the histories of the population conditioned on having a single survivor at some final time TT. We study the quasi-stationary regime for v<vcv<v_c when TT is large. To do so, one can construct a modified stochastic process which is equivalent to the original process conditioned on having a single survivor at final time TT. We then use this construction to show that the properties of the quasi-stationary regime are universal when v→vcv\to v_c. We also solve exactly a simple version of the problem, the exponential model, for which the study of the quasi-stationary regime can be reduced to the analysis of a single one-dimensional map.Comment: 2 figures, minor corrections, one reference adde

    Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE pacific cross-section intercomparison (GPCI)

    No full text
    International audienceA model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ-the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June-July-August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yrECMWFRe-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models. © 2011 American Meteorological Society

    Priority questions for biodiversity conservation in the Mediterranean biome: Heterogeneous perspectives across continents and stakeholders

    Get PDF
    The identification of research questions with high relevance for biodiversity conservation is an important step towards designing more effective policies and management actions, and to better allocate funding among alternative conservation options. However, the identification of priority questions may be influenced by regional differences in biodiversity threats and social contexts, and to variations in the perceptions and interests of different stakeholders. Here we describe the results of a prioritization exercise involving six types of stakeholders from the Mediterranean biome, which includes several biodiversity hotspots spread across five regions of the planet (Europe, Africa, North and South America, and Australia). We found great heterogeneity across regions and stakeholder types in the priority topics identified and disagreement among the priorities of research scientists and other stakeholders. However, governance, climate change, and public participation issues were key topics in most regions. We conclude that the identification of research priorities should be targeted in a way that integrates the spectrum of stakeholder interests, potential funding sources and regional needs, and that further development of interdisciplinary studies is required. The key questions identified here provide a basis to identify priorities for research funding aligned with biodiversity conservation needs in this biome
    corecore